일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 퀄컴
- VoIP
- 라디오
- 그녀가말했다
- 페이스북
- CDMA
- Java
- HSDPA
- 민동현
- 이지형
- SWT
- "명탐정 코난"
- 위피
- 공정위
- Wibro
- USIM
- EV-DO Rev. B
- 유희열의라디오천국
- brew
- ETF
- 김장훈의who
- 사요
- 러시아
- 민동현의토요명화
- 자바
- 한국의 기획자들
- 차트쇼쇼쇼
- itmusic
- 모던음악만만세
- 김장훈
- Today
- Total
zyint's blog
Introduction to Data Mining(Pang-Nian Tan/Michael Steinbach/Vipin Kumar) 본문
Introduction to Data Mining(Pang-Nian Tan/Michael Steinbach/Vipin Kumar)
진트 2010. 1. 18. 00:20기본정보
- 저자: Tan/ Steinbach/ Kumar
- 출판사: Addison Wesley
- 출간일: 2006년
- ISBN-10: 0321420527
- ISBN-13: 9780321420527
- 분량: 769쪽
- Paperback International Edition
- 저자 홈페이지: http://www-users.cs.umn.edu/~kumar/dmbook/index.php
다운로드
- 저자 PPT 자료:
목차
Preface vii
1 Introduction 1
1.1 What Is Data Mining? . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivating Challenges . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Origins of Data Mining . . . . . . . . . . . . . . . . . . . . 6
1.4 Data Mining Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Scope and Organization of the Book . . . . . . . . . . . . . . . 11
1.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Data 19
2.1 Types of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1 Attributes and Measurement . . . . . . . . . . . . . . . 23
2.1.2 Types of Data Sets . . . . . . . . . . . . . . . . . . . . . 29
2.2 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Measurement and Data Collection Issues . . . . . . . . . 37
2.2.2 Issues Related to Applications . . . . . . . . . . . . . . 43
2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . 50
2.3.4 Feature Subset Selection . . . . . . . . . . . . . . . . . . 52
2.3.5 Feature Creation . . . . . . . . . . . . . . . . . . . . . . 55
2.3.6 Discretization and Binarization . . . . . . . . . . . . . . 57
2.3.7 Variable Transformation . . . . . . . . . . . . . . . . . . 63
2.4 Measures of Similarity and Dissimilarity . . . . . . . . . . . . . 65
2.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.2 Similarity and Dissimilarity between Simple Attributes . 67
2.4.3 Dissimilarities between Data Objects . . . . . . . . . . . 69
2.4.4 Similarities between Data Objects . . . . . . . . . . . . 72
2.4.5 Examples of Proximity Measures . . . . . . . . . . . . . 73
2.4.6 Issues in Proximity Calculation . . . . . . . . . . . . . . 80
2.4.7 Selecting the Right Proximity Measure . . . . . . . . . . 83
2.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3 Exploring Data 97
3.1 The Iris Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.1 Frequencies and the Mode . . . . . . . . . . . . . . . . . 99
3.2.2 Percentiles . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.3 Measures of Location: Mean and Median . . . . . . . . 101
3.2.4 Measures of Spread: Range and Variance . . . . . . . . 102
3.2.5 Multivariate Summary Statistics . . . . . . . . . . . . . 104
3.2.6 Other Ways to Summarize the Data . . . . . . . . . . . 105
3.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.1 Motivations for Visualization . . . . . . . . . . . . . . . 105
3.3.2 General Concepts . . . . . . . . . . . . . . . . . . . . . . 106
3.3.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.3.4 Visualizing Higher-Dimensional Data . . . . . . . . . . . 124
3.3.5 Do’s and Don’ts . . . . . . . . . . . . . . . . . . . . . . 130
3.4 OLAP and Multidimensional Data Analysis . . . . . . . . . . . 131
3.4.1 Representing Iris Data as a Multidimensional Array . . 131
3.4.2 Multidimensional Data: The General Case . . . . . . . . 133
3.4.3 Analyzing Multidimensional Data . . . . . . . . . . . . 135
3.4.4 Final Comments on Multidimensional Data Analysis . . 139
3.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4 Classification:
Basic Concepts, Decision Trees, and Model Evaluation 145
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2 General Approach to Solving a Classification Problem . . . . . 148
4.3 Decision Tree Induction . . . . . . . . . . . . . . . . . . . . . . 150
4.3.1 How a Decision Tree Works . . . . . . . . . . . . . . . . 150
4.3.2 How to Build a Decision Tree . . . . . . . . . . . . . . . 151
4.3.3 Methods for Expressing Attribute Test Conditions . . . 155
4.3.4 Measures for Selecting the Best Split . . . . . . . . . . . 158
4.3.5 Algorithm for Decision Tree Induction . . . . . . . . . . 164
4.3.6 An Example: Web Robot Detection . . . . . . . . . . . 166
4.3.7 Characteristics of Decision Tree Induction . . . . . . . . 168
4.4 Model Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4.1 Overfitting Due to Presence of Noise . . . . . . . . . . . 175
4.4.2 Overfitting Due to Lack of Representative Samples . . . 177
4.4.3 Overfitting and the Multiple Comparison Procedure . . 178
4.4.4 Estimation of Generalization Errors . . . . . . . . . . . 179
4.4.5 Handling Overfitting in Decision Tree Induction . . . . 184
4.5 Evaluating the Performance of a Classifier . . . . . . . . . . . . 186
4.5.1 Holdout Method . . . . . . . . . . . . . . . . . . . . . . 186
4.5.2 Random Subsampling . . . . . . . . . . . . . . . . . . . 187
4.5.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . 187
4.5.4 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.6 Methods for Comparing Classifiers . . . . . . . . . . . . . . . . 188
4.6.1 Estimating a Confidence Interval for Accuracy . . . . . 189
4.6.2 Comparing the Performance of Two Models . . . . . . . 191
4.6.3 Comparing the Performance of Two Classifiers . . . . . 192
4.7 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5 Classification: Alternative Techniques 207
5.1 Rule-Based Classifier . . . . . . . . . . . . . . . . . . . . . . . . 207
5.1.1 How a Rule-Based Classifier Works . . . . . . . . . . . . 209
5.1.2 Rule-Ordering Schemes . . . . . . . . . . . . . . . . . . 211
5.1.3 How to Build a Rule-Based Classifier . . . . . . . . . . . 212
5.1.4 Direct Methods for Rule Extraction . . . . . . . . . . . 213
5.1.5 Indirect Methods for Rule Extraction . . . . . . . . . . 221
5.1.6 Characteristics of Rule-Based Classifiers . . . . . . . . . 223
5.2 Nearest-Neighbor classifiers . . . . . . . . . . . . . . . . . . . . 223
5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.2.2 Characteristics of Nearest-Neighbor Classifiers . . . . . 226
5.3 Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 227
5.3.1 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . 228
5.3.2 Using the Bayes Theorem for Classification . . . . . . . 229
5.3.3 Na¨ıve Bayes Classifier . . . . . . . . . . . . . . . . . . . 231
5.3.4 Bayes Error Rate . . . . . . . . . . . . . . . . . . . . . . 238
5.3.5 Bayesian Belief Networks . . . . . . . . . . . . . . . . . 240
5.4 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . . 246
5.4.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 247
5.4.2 Multilayer Artificial Neural Network . . . . . . . . . . . 251
5.4.3 Characteristics of ANN . . . . . . . . . . . . . . . . . . 255
5.5 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . 256
5.5.1 Maximum Margin Hyperplanes . . . . . . . . . . . . . . 256
5.5.2 Linear SVM: Separable Case . . . . . . . . . . . . . . . 259
5.5.3 Linear SVM: Nonseparable Case . . . . . . . . . . . . . 266
5.5.4 Nonlinear SVM . . . . . . . . . . . . . . . . . . . . . . . 270
5.5.5 Characteristics of SVM . . . . . . . . . . . . . . . . . . 276
5.6 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . 276
5.6.1 Rationale for Ensemble Method . . . . . . . . . . . . . . 277
5.6.2 Methods for Constructing an Ensemble Classifier . . . . 278
5.6.3 Bias-Variance Decomposition . . . . . . . . . . . . . . . 281
5.6.4 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
5.6.5 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
5.6.6 Random Forests . . . . . . . . . . . . . . . . . . . . . . 290
5.6.7 Empirical Comparison among Ensemble Methods . . . . 294
5.7 Class Imbalance Problem . . . . . . . . . . . . . . . . . . . . . 294
5.7.1 Alternative Metrics . . . . . . . . . . . . . . . . . . . . . 295
5.7.2 The Receiver Operating Characteristic Curve . . . . . . 298
5.7.3 Cost-Sensitive Learning . . . . . . . . . . . . . . . . . . 302
5.7.4 Sampling-Based Approaches . . . . . . . . . . . . . . . . 305
5.8 Multiclass Problem . . . . . . . . . . . . . . . . . . . . . . . . . 306
5.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6 Association Analysis: Basic Concepts and Algorithms 327
6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.2 Frequent Itemset Generation . . . . . . . . . . . . . . . . . . . 332
6.2.1 The Apriori Principle . . . . . . . . . . . . . . . . . . . 333
6.2.2 Frequent Itemset Generation in the Apriori Algorithm . 335
6.2.3 Candidate Generation and Pruning . . . . . . . . . . . . 338
6.2.4 Support Counting . . . . . . . . . . . . . . . . . . . . . 342
6.2.5 Computational Complexity . . . . . . . . . . . . . . . . 345
6.3 Rule Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.3.1 Confidence-Based Pruning . . . . . . . . . . . . . . . . . 350
6.3.2 Rule Generation in Apriori Algorithm . . . . . . . . . . 350
6.3.3 An Example: Congressional Voting Records . . . . . . . 352
6.4 Compact Representation of Frequent Itemsets . . . . . . . . . . 353
6.4.1 Maximal Frequent Itemsets . . . . . . . . . . . . . . . . 354
6.4.2 Closed Frequent Itemsets . . . . . . . . . . . . . . . . . 355
6.5 Alternative Methods for Generating Frequent Itemsets . . . . . 359
6.6 FP-Growth Algorithm . . . . . . . . . . . . . . . . . . . . . . . 363
6.6.1 FP-Tree Representation . . . . . . . . . . . . . . . . . . 363
6.6.2 Frequent Itemset Generation in FP-Growth Algorithm . 366
6.7 Evaluation of Association Patterns . . . . . . . . . . . . . . . . 370
6.7.1 Objective Measures of Interestingness . . . . . . . . . . 371
6.7.2 Measures beyond Pairs of Binary Variables . . . . . . . 382
6.7.3 Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . 384
6.8 Effect of Skewed Support Distribution . . . . . . . . . . . . . . 386
6.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 390
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7 Association Analysis: Advanced Concepts 415
7.1 Handling Categorical Attributes . . . . . . . . . . . . . . . . . 415
7.2 Handling Continuous Attributes . . . . . . . . . . . . . . . . . 418
7.2.1 Discretization-Based Methods . . . . . . . . . . . . . . . 418
7.2.2 Statistics-Based Methods . . . . . . . . . . . . . . . . . 422
7.2.3 Non-discretization Methods . . . . . . . . . . . . . . . . 424
7.3 Handling a Concept Hierarchy . . . . . . . . . . . . . . . . . . 426
7.4 Sequential Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 429
7.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 429
7.4.2 Sequential Pattern Discovery . . . . . . . . . . . . . . . 431
7.4.3 Timing Constraints . . . . . . . . . . . . . . . . . . . . . 436
7.4.4 Alternative Counting Schemes . . . . . . . . . . . . . . 439
7.5 Subgraph Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 442
7.5.1 Graphs and Subgraphs . . . . . . . . . . . . . . . . . . . 443
7.5.2 Frequent Subgraph Mining . . . . . . . . . . . . . . . . 444
7.5.3 Apriori -like Method . . . . . . . . . . . . . . . . . . . . 447
7.5.4 Candidate Generation . . . . . . . . . . . . . . . . . . . 448
7.5.5 Candidate Pruning . . . . . . . . . . . . . . . . . . . . . 453
7.5.6 Support Counting . . . . . . . . . . . . . . . . . . . . . 457
7.6 Infrequent Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 457
7.6.1 Negative Patterns . . . . . . . . . . . . . . . . . . . . . 458
7.6.2 Negatively Correlated Patterns . . . . . . . . . . . . . . 458
7.6.3 Comparisons among Infrequent Patterns, Negative Patterns,
and Negatively Correlated Patterns . . . . . . . . 460
7.6.4 Techniques for Mining Interesting Infrequent Patterns . 461
7.6.5 Techniques Based on Mining Negative Patterns . . . . . 463
7.6.6 Techniques Based on Support Expectation . . . . . . . . 465
7.7 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 469
7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
8 Cluster Analysis: Basic Concepts and Algorithms 487
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
8.1.1 What Is Cluster Analysis? . . . . . . . . . . . . . . . . . 490
8.1.2 Different Types of Clusterings . . . . . . . . . . . . . . . 491
8.1.3 Different Types of Clusters . . . . . . . . . . . . . . . . 493
8.2 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
8.2.1 The Basic K-means Algorithm . . . . . . . . . . . . . . 497
8.2.2 K-means: Additional Issues . . . . . . . . . . . . . . . . 506
8.2.3 Bisecting K-means . . . . . . . . . . . . . . . . . . . . . 508
8.2.4 K-means and Different Types of Clusters . . . . . . . . 510
8.2.5 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 510
8.2.6 K-means as an Optimization Problem . . . . . . . . . . 513
8.3 Agglomerative Hierarchical Clustering . . . . . . . . . . . . . . 515
8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm 516
8.3.2 Specific Techniques . . . . . . . . . . . . . . . . . . . . . 518
8.3.3 The Lance-Williams Formula for Cluster Proximity . . . 524
8.3.4 Key Issues in Hierarchical Clustering . . . . . . . . . . . 524
8.3.5 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 526
8.4 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8.4.1 Traditional Density: Center-Based Approach . . . . . . 527
8.4.2 The DBSCAN Algorithm . . . . . . . . . . . . . . . . . 528
8.4.3 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 530
8.5 Cluster Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 532
8.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 533
8.5.2 Unsupervised Cluster Evaluation Using Cohesion and
Separation . . . . . . . . . . . . . . . . . . . . . . . . . 536
8.5.3 Unsupervised Cluster Evaluation Using the Proximity
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.5.4 Unsupervised Evaluation of Hierarchical Clustering . . . 544
8.5.5 Determining the Correct Number of Clusters . . . . . . 546
8.5.6 Clustering Tendency . . . . . . . . . . . . . . . . . . . . 547
8.5.7 Supervised Measures of Cluster Validity . . . . . . . . . 548
8.5.8 Assessing the Significance of Cluster Validity Measures . 553
8.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 555
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
9 Cluster Analysis: Additional Issues and Algorithms 569
9.1 Characteristics of Data, Clusters, and Clustering Algorithms . 570
9.1.1 Example: Comparing K-means and DBSCAN . . . . . . 570
9.1.2 Data Characteristics . . . . . . . . . . . . . . . . . . . . 571
9.1.3 Cluster Characteristics . . . . . . . . . . . . . . . . . . . 573
9.1.4 General Characteristics of Clustering Algorithms . . . . 575
9.2 Prototype-Based Clustering . . . . . . . . . . . . . . . . . . . . 577
9.2.1 Fuzzy Clustering . . . . . . . . . . . . . . . . . . . . . . 577
9.2.2 Clustering Using Mixture Models . . . . . . . . . . . . . 583
9.2.3 Self-Organizing Maps (SOM) . . . . . . . . . . . . . . . 594
9.3 Density-Based Clustering . . . . . . . . . . . . . . . . . . . . . 600
9.3.1 Grid-Based Clustering . . . . . . . . . . . . . . . . . . . 601
9.3.2 Subspace Clustering . . . . . . . . . . . . . . . . . . . . 604
9.3.3 DENCLUE: A Kernel-Based Scheme for Density-Based
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 608
9.4 Graph-Based Clustering . . . . . . . . . . . . . . . . . . . . . . 612
9.4.1 Sparsification . . . . . . . . . . . . . . . . . . . . . . . . 613
9.4.2 Minimum Spanning Tree (MST) Clustering . . . . . . . 614
9.4.3 OPOSSUM: Optimal Partitioning of Sparse Similarities
Using METIS . . . . . . . . . . . . . . . . . . . . . . . . 616
9.4.4 Chameleon: Hierarchical Clustering with Dynamic
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 616
9.4.5 Shared Nearest Neighbor Similarity . . . . . . . . . . . 622
9.4.6 The Jarvis-Patrick Clustering Algorithm . . . . . . . . . 625
9.4.7 SNN Density . . . . . . . . . . . . . . . . . . . . . . . . 627
9.4.8 SNN Density-Based Clustering . . . . . . . . . . . . . . 629
9.5 Scalable Clustering Algorithms . . . . . . . . . . . . . . . . . . 630
9.5.1 Scalability: General Issues and Approaches . . . . . . . 630
9.5.2 BIRCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
9.5.3 CURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
9.6 Which Clustering Algorithm? . . . . . . . . . . . . . . . . . . . 639
9.7 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 643
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
10 Anomaly Detection 651
10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
10.1.1 Causes of Anomalies . . . . . . . . . . . . . . . . . . . . 653
10.1.2 Approaches to Anomaly Detection . . . . . . . . . . . . 654
10.1.3 The Use of Class Labels . . . . . . . . . . . . . . . . . . 655
10.1.4 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
10.2 Statistical Approaches . . . . . . . . . . . . . . . . . . . . . . . 658
10.2.1 Detecting Outliers in a Univariate Normal Distribution 659
10.2.2 Outliers in a Multivariate Normal Distribution . . . . . 661
10.2.3 A Mixture Model Approach for Anomaly Detection . . . 662
10.2.4 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 665
10.3 Proximity-Based Outlier Detection . . . . . . . . . . . . . . . . 666
10.3.1 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 666
10.4 Density-Based Outlier Detection . . . . . . . . . . . . . . . . . 668
10.4.1 Detection of Outliers Using Relative Density . . . . . . 669
10.4.2 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 670
10.5 Clustering-Based Techniques . . . . . . . . . . . . . . . . . . . 671
10.5.1 Assessing the Extent to Which an Object Belongs to a
Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
10.5.2 Impact of Outliers on the Initial Clustering . . . . . . . 674
10.5.3 The Number of Clusters to Use . . . . . . . . . . . . . . 674
10.5.4 Strengths and Weaknesses . . . . . . . . . . . . . . . . . 674
10.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 675
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
Appendix A Linear Algebra 685
A.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
A.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 685
A.1.2 Vector Addition and Multiplication by a Scalar . . . . . 685
A.1.3 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 687
A.1.4 The Dot Product, Orthogonality, and Orthogonal
Projections . . . . . . . . . . . . . . . . . . . . . . . . . 688
A.1.5 Vectors and Data Analysis . . . . . . . . . . . . . . . . 690
A.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
A.2.1 Matrices: Definitions . . . . . . . . . . . . . . . . . . . . 691
A.2.2 Matrices: Addition and Multiplication by a Scalar . . . 692
A.2.3 Matrices: Multiplication . . . . . . . . . . . . . . . . . . 693
A.2.4 Linear Transformations and Inverse Matrices . . . . . . 695
A.2.5 Eigenvalue and Singular Value Decomposition . . . . . . 697
A.2.6 Matrices and Data Analysis . . . . . . . . . . . . . . . . 699
A.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 700
Appendix B Dimensionality Reduction 701
B.1 PCA and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
B.1.1 Principal Components Analysis (PCA) . . . . . . . . . . 701
B.1.2 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
B.2 Other Dimensionality Reduction Techniques . . . . . . . . . . . 708
B.2.1 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . 708
B.2.2 Locally Linear Embedding (LLE) . . . . . . . . . . . . . 710
B.2.3 Multidimensional Scaling, FastMap, and ISOMAP . . . 712
B.2.4 Common Issues . . . . . . . . . . . . . . . . . . . . . . . 715
B.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 716
Appendix C Probability and Statistics 719
C.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
C.1.1 Expected Values . . . . . . . . . . . . . . . . . . . . . . 722
C.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
C.2.1 Point Estimation . . . . . . . . . . . . . . . . . . . . . . 724
C.2.2 Central Limit Theorem . . . . . . . . . . . . . . . . . . 724
C.2.3 Interval Estimation . . . . . . . . . . . . . . . . . . . . . 725
C.3 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . 726
Appendix D Regression 729
D.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
D.2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . 730
D.2.1 Least Square Method . . . . . . . . . . . . . . . . . . . 731
D.2.2 Analyzing Regression Errors . . . . . . . . . . . . . . . 733
D.2.3 Analyzing Goodness of Fit . . . . . . . . . . . . . . . . 735
D.3 Multivariate Linear Regression . . . . . . . . . . . . . . . . . . 736
D.4 Alternative Least-Square Regression Methods . . . . . . . . . . 737
Appendix E Optimization 739
E.1 Unconstrained Optimization . . . . . . . . . . . . . . . . . . . . 739
E.1.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . 742
E.2 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . 746
E.2.1 Equality Constraints . . . . . . . . . . . . . . . . . . . . 746
E.2.2 Inequality Constraints . . . . . . . . . . . . . . . . . . . 747
Author Index 750
Subject Index 758
Copyright Permissions 769
이 글은 스프링노트에서 작성되었습니다.